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1 Introduction

The operator S = − d2

dx2
+ x+ q (x) describes the effect of the potential on the electric field and

is called the Stark operator. The spectral properties of the Stark has been intensively studied
during the many years(Jensen, 1989; Korotyaev, 2018 and references quoted therein). It is known
(Khanmamedov et al., 2020) that in the study of the inverse scattering problem, a special role is
played by expansions in eigenfunctions of the continuous spectrum of the unperturbed operator.

We consider the differential equation

−y′′ + xy + ρ (x) y = λy, −∞ < x <∞, λ ∈ C, (1)

where ρ (x) = c1θ (x) + c2θ (−x) , θ (x) is Heaviside function, c1, c2 are real numbers. This

equation corresponds to the Stark operator S = − d2

dx2
+ x + q (x), the perturbation potential

q (x) of which has a step-like form. Differential equation (1) defines in space L2 (−∞,+∞) a self-
adjoint operator L, which can be obtained by closure of symmetric operator defined by equation
(1) on twice continuously differentiable finite functions. In this paper, the direct scattering
problem for the operator L is studied. A formula for the expansion in terms of eigenfunctions
of the continuous spectrum of the operator L is obtained. The obtained results can be used to
solve inverse scattering problem for the Stark operator S = − d2

dx2
+ x+Q (x), the perturbation

potential Q (x)of which satisfy the conditions

Q (x)→ c1, x→ +∞, Q (x)→ c2, x→ −∞.

Note that various spectral problems for the Stark equation and similar equations were studied
in the works Its et al. (2016), Khanmamedov et al. (2020), Gafarova et al. (2021), Korotyaev
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(2017), Savchuk et al. (2017), Makhmudova et al. (2020), Toloza et al. (2023), Gasimov, (2008;
2013).

The results of this work can be used in the study of direct and inverse spectral problems for
the Schrödinger operator of the form Lc = − d2

dx2
+ cxα +q (x). Note that the spectral properties

of the Schrödinger operator of the form Lc = − d2

dx2
+ cxα studied in the works Abbasova et al.

(2020), Tumanov (2021), Ishkin (2023).

2 Spectral analysis of the operator L

In what follows, we deal with special functions satisfying the Airy equation

−y′′ + zy = 0.

It is well known (Abramowitz et al., 1964) that this equation has two linearly independent
solutions Ai (z) and Bi (z) with the initial conditions
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3
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3 Γ
(
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3

) , Ai′ (0) =
1

3
1
3 Γ
(

1
3

) ,
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(
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3

1
6

Γ
(

1
3

) .
The Wronskian {Ai (z) , Bi (z)} of these functions satisfies

{Ai (z) , Bi (z)} = Ai (z)Bi′ (z)−Ai′ (z)Bi (z) = π−1.

Both functions are entire functions of order 3
2 and type 2

3 . We have (Abramowitz et al., 1964)
asymptotic equalities for |z| → ∞

Ai (z) ∼ π−
1
2 z−

1
4 e−ζ

[
1 +O

(
ζ−1
)]
, |arg z| < π
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1
2 z−

1
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4

) [
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(
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3
,
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2 z−
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(
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3
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4
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(
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where ζ = 2
3z

3
2 .

Lemma 1. For any λ from the complex plane, equation (1) has solutions ψ± (x, λ) in the form

ψ+ (x, λ) =


Ai (x+ c1 − λ) , x ≥ 0,

π [Ai (c1 − λ)Bi′ (c2 − λ)−Ai′ (c1 − λ)Bi (c2 − λ)]Ai (x+ c2 − λ) +
+π [Ai (c2 − λ)Ai′ (c1 − λ)−Ai (c1 − λ)Ai′ (c2 − λ)]Bi (x+ c2 − λ) , x < 0,

(2)

ψ− (x, λ) =


π {Bi′ (c1 − λ) [Ai (c2 − λ)− iBi (c2 − λ)]−
Bi (c1 − λ) [Ai′ (c2 − λ)− iBi′ (c2 − λ)]}Ai (x+ c1 − λ) +
π {Ai (c1 − λ) [Ai (c2 − λ)− iBi (c2 − λ)]−
Ai′ (c1 − λ) [Ai′ (c2 − λ)− iBi′ (c2 − λ)]}Bi (x+ c1 − λ) , x ≥ 0

Ai (x+ c2 − λ)− iBi (x+ c2 − λ) , x < 0.

(3)
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Proof. Obviously, when x ≥ 0 one of the solutions of equation (1) is function Ai (x+ c1 − λ).
On the other hand, for x ≤ 0 functions Ai (x+ c2 − λ) and Bi (x+ c2 − λ) form a fundamental
system of solutions to equation (1). Therefore, any solution of equation (1) can be represented
as

αAi (x+ c2 − λ) + β Bi (x+ c2 − λ) . (4)

If we glue these solutions at a pointx = 0 , we get{
Ai (c2 − λ)α+Bi (c2 − λ)β = Ai (c1 − λ) ,
Ai′ (c2 − λ)α+Bi′ (c2 − λ)β = Ai′ (c1 − λ) .

Using Cramer’s rule, from the last system of equations we obtain

α = π

∣∣∣∣ Ai (c1 − λ) Bi (c2 − λ)
Ai′ (c1 − λ) Bi′ (c2 − λ)

∣∣∣∣ , β = π

∣∣∣∣ Ai (c2 − λ) Ai (c1 − λ)
Ai′ (c2 − λ) Ai′ (c1 − λ)

∣∣∣∣ .
Substituting the found values of α and β into representation (4), we obtain formula (2). Formula
(3) is derived similarly.

The lemma is proved.
We note that at each fixed x, the solutions ψ± (x, λ)are the entire functions with respect to

λ. Moreover, the solution ψ+ (x, λ) is real-valued for λ ∈ (−∞,+∞).
Next, using (2) and (3), we find that forλ ∈ (−∞,+∞) two solutions ψ− (x, λ), ψ− (x, λ) of

Eq. (1) are linearly independent and their Wronskian is given by{
ψ− (x, λ) , ψ− (x, λ)

}
= ψ− (0, λ)ψ′− (0, λ)− ψ′− (0, λ)ψ− (x, λ) = 2iπ−1.

It follows from the last equality that the identity

ψ+ (x, λ) = a0 (λ)ψ− (x, λ) + a0 (λ)ψ− (x, λ) , (5)

holds forλ ∈ (−∞,+∞), where the coefficient a0 (λ), by virtue of (2), (3), is given by

a0 (λ) = πW{ψ−(x,λ),ψ+(x,λ)}
2i =

= π
2i ([Ai (c2 − λ)− iBi (c2 − λ)]Ai′ (c1 − λ)− [Ai′ (c2 − λ)− iBi′ (c2 − λ)]Ai (c1 − λ)) .

(6)

According to formula (6), the function a0 (λ) admits an analytic extension to the all complex

plane and has no zeros. The functions t0 (λ) = 1
a0(λ) and r0 (λ) = a0(λ)

a0(λ) have the meaning of the

respective transition and reflection coefficients in the scattering theory for the equation (1).

The function ψ+(x,λ)
a0(λ) is called the solution of the scattering problem for the equation (1).

For real λ, the solution ψ+(x,λ)
a0(λ) is bounded, which corresponds to the continuous spectrum of

problem (1).
Let us study the resolvent of the operator L. We consider the equation

−y′′ + xy + ρ (x) y − λy = f (x) , −∞ < x <∞, Imλ 6= 0,

where y = y (x) , f (x) ∈ L2 (−∞,+∞). By a classical theorem on the general form of a solution
of a differential equation,

y (x) = C+ψ+ (x, λ) + C−ψ− (x, λ) +

+ πi
2a0(λ)

[
ψ+ (x, λ)

∫ x
−∞ ψ− (t, λ) f (t) dt+ ψ− (x, λ)

∫ +∞
x ψ+ (t, λ) f (t) dt

]
,

where C+ and C− are constants. From formulas (2), (3) it follows that

ψ− (x, λ) ∈ L2 (−∞, 0) , ψ+ (x, λ) /∈ L2 (−∞, 0) ,
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ψ+ (x, λ)

∫ x

−∞
ψ− (t, λ) f (t) dt+ ψ− (x, λ)

∫ +∞

x
ψ+ (t, λ) f (t) dt ∈ L2 (−∞,+∞) .

Then from relations y (x) ∈ L2 (−∞,+∞), ψ− (x, λ) /∈ L2 (0,+∞), ψ+ (x, λ) /∈ L2 (−∞, 0),
ψ+ (x, λ) ∈ L2 (0,+∞),ψ− (x, λ) ∈ L2 (−∞, 0) it follows that C+ = 0, C− = 0. Thus, formula

y (x) =
πi

2a0 (λ)

[
ψ+ (x, λ)

∫ x

−∞
ψ− (t, λ) f (t) dt+ ψ− (x, λ)

∫ +∞

x
ψ+ (t, λ) f (t) dt

]
,

defines the inverse operator(L− λI)−1, where I is the unit operator . It is easy to prove that
the inverse operator (L− λI)−1 is bounded.

Thus, we have proven the following theorem.

Theorem 1. For λ /∈ (−∞,+∞), integral operator Rλ is defined in space L2 (−∞,+∞) by the
formula

(Rλf) (x) =

∫ +∞

−∞
R (x, t, λ) f (t) dt,

where R (x, t, λ) = πi
2a0(λ)ψ+ (x, λ)ψ− (x, λ) θ (x− t) +ψ− (x, λ)ψ+ (t, λ) θ (t− x) is the resolvent

of the operator L.

Explicit formula for the resolvent Rλ leads to the theorem of expansion in terms of eigen-
functions of the operator L. As is known( see Jensen, 1989 ), the continuous spectrum of the
operator L fills the entire real axis. Then, we denote by E (∆), where ∆ runs the Borel subsets
in (−∞,+∞), decomposition of the identity of a self-adjoint operator L (see. Takhtajan et all.,
2015). In the absence of a point spectrum, the following formula is valid:

E (∆) = lim
ε→+0

1

2πi

∫
∆

(R (λ+ iε)−R (λ− iε)) dλ.

(Takhtajan et al., 2015)). This formula is sometimes called Stone’s formula. In particular,
assuming ∆ = (−∞,+∞), for the operator L we get

I = lim
ε→+0

1

2πi

∫ +∞

−∞
(R (λ+ iε)−R (λ− iε)) dλ

This formula and relation (5) serve as the basis for the derivation of the expansion theorem.

Theorem 2. The expansion formula

1

4

∫ ∞
−∞

1

|a0 (λ)|2
ψ+ (x, λ)ψ+ (y, λ) dλ = δ (x− y)

is valid, where δ is Dirac’s delta function.
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